Function to plot the pumping test data. This function can create two different types of plots: diagnostic and estimation. The diagnostic plot includes the drawdown vs time plot and the derivative of drawdown with respect to the log of time. This derivative can help in the identification of the flow regime that occurred when the data was acquired.

# S3 method for pumping_test
plot(x, type = c("diagnostic", "estimation",
  "model.diagnostic", "uncert", "mcmc.trace", "mcmc.run_mean",
  "mcmc.compare", "mcmc.autocorr", "sample.influence"),
  dmethod = "central", d = 2, scale = "loglog", y.intersp = 0.5,
  slug = FALSE, legend = TRUE, results = FALSE, cex = 1, ...)

Arguments

x

A pumping_test object

type

Type of plot. Current options include

  • diagnostic

  • estimation

  • model.diagnostic

  • uncertainty

  • mcmc.trace

  • mcmc.run_mean

  • mcmc.compare

  • mcmc.autocorr

  • sample.influence

dmethod

Method to calculate the derivative (central, horner, bourdet, spline)

d

Derivative parameter. If method is bourdet then d is a parameter to specify the number of lags in the derivative. If method is spline then d is the number of points used to calculate the derivative.

scale

Option to define a loglog or semilog diagnostic plot

y.intersp

Numeric value to define the interspacing between lines in the legend

slug

Logical flag to indicate a slug test

legend

Logical flag to indicate if legend is included (only for estimation plot)

results

Logical flag to indicate if the estimation results are going to be included in the estimation plot

cex

character expansion factor relative to current par("cex"). This is a parameter of the plot functions.

...

Additional parameters for the plot, points and lines functions.

See also

Other base functions: additional.parameters<-, confint.pumping_test, confint_bootstrap, confint_jackniffe, confint_wald, estimated<-, evaluate, fit.optimization, fit.parameters<-, fit.sampling, fit, hydraulic.parameter.names<-, hydraulic.parameters<-, model.parameters, model<-, plot_model_diagnostic, plot_sample_influence, plot_uncert, print.pumping_test, pumping_test, simulate, summary.pumping_test

Examples

# Define a pumping test data(theis) ptest <- pumping_test("Test", Q = 1.388e-2, r = 250, t = theis$t, s = theis$s) # Diagnostic plot using default parameters plot(ptest)
#> Joining, by = c("t", "s", "variable")
# Diagnostic plot with Horner derivative plot(ptest, dmethod = 'horner')
#> Joining, by = c("t", "s", "variable")
# Diagnostic plot with Bourdet derivative d = 3 plot(ptest, dmethod = 'bourdet', d = 3)
#> Joining, by = c("t", "s", "variable")
# Diagnostic plot with Spline derivative plot(ptest, dmethod = 'spline', d = 20)
#> Joining, by = c("t", "s", "variable")
# Diagnostic plot with semilog scale plot(ptest, scale = 'slog')
#> Joining, by = c("t", "s", "variable")
#estimation Plot ptest.fit <- fit(ptest, "theis") hydraulic.parameters(ptest) <- ptest.fit$hydraulic_parameters fit.parameters(ptest) <- ptest.fit$parameters model(ptest) <- "theis" estimated(ptest) <- TRUE plot(ptest, type = 'estimation', dmethod = "spline", d = 30, results = FALSE)
#> Joining, by = c("t", "s", "variable")
# Model Diagnostic plot plot(ptest, type = 'model.diagnostic')
#> Joining, by = c("t", "s", "variable")
#> `geom_smooth()` using method = 'loess' and formula 'y ~ x'
#> `geom_smooth()` using method = 'loess' and formula 'y ~ x'
#> TableGrob (2 x 2) "arrange": 4 grobs #> z cells name grob #> 1 1 (1-1,1-1) arrange gtable[layout] #> 2 2 (1-1,2-2) arrange gtable[layout] #> 3 3 (2-2,1-1) arrange gtable[layout] #> 4 4 (2-2,2-2) arrange gtable[layout]
# Uncertainty plot (bootstrap) ptest.confint <- confint(ptest, level = c(0.025, 0.975), method = 'bootstrap', n = 30, neval = 100) hydraulic.parameters(ptest) <- ptest.confint$hydraulic.parameters hydraulic.parameter.names(ptest) <- ptest.confint$hydraulic.parameters.names plot(ptest, type = 'uncertainty')
#> Joining, by = c("t", "s", "variable")