Function to estimate the aquifer parameters from a pumping test using several optimization functions.
fit.optimization(ptest, model, obj.fn = "rss", opt.method = "nls", lower = 1e-09, upper = Inf, control.par, seed = 12345)
| ptest | A pumping_test object. |
|---|---|
| model | A character string specifying the model used in the parameter estimation. |
| obj.fn | A character string specifying the objective function used in the parameter estimation. Currently the following objective functions are included:
|
| opt.method | A character string specifying the optimization method used in the parameter estimation. Currently the following methologies are included:
|
| lower | A numeric vector with the lower values of the search region |
| upper | A numeric vector with the upper values of the search region |
| control.par | A list with the parameters of the optimization method |
| seed | A random seed |
A list with the following entries:
hydraulic_parameters: hydraulic parameters of the model (includes transmissivity, storage coefficient and radius of influence, or others)
parameters: fitted parameters (including a and t0 and other depending on the model)
resfit: The list or object returned by the optimization driver of each method.
value: The value of the objective function reached at the end of the optimization run.
Other base functions: additional.parameters<-,
confint.pumping_test,
confint_bootstrap,
confint_jackniffe,
confint_wald, estimated<-,
evaluate, fit.parameters<-,
fit.sampling, fit,
hydraulic.parameter.names<-,
hydraulic.parameters<-,
model.parameters, model<-,
plot.pumping_test,
plot_model_diagnostic,
plot_sample_influence,
plot_uncert,
print.pumping_test,
pumping_test, simulate,
summary.pumping_test
# NOT RUN { # Define pumping_test object data("boulton") ptest.boulton <- pumping_test("Well1", Q = 0.03, r = 20, t = boulton$t, s = boulton$s) # Parameter estimation using L-BFGS-B ptest.boulton.bfgs.rss <- fit.optimization(ptest.boulton, "boulton", obj.fn = "rss", opt.method = "l-bfgs-b", seed = 54321) # Parameter estimation using Simulated Annealing ptest.boulton.sa.rss <- fit.optimization(ptest.boulton, "boulton", obj.fn = "rss", opt.method = "sa", seed = 54321) # Parameter estimation using Genetic Algorithms ptest.boulton.ga.rss <- fit.optimization(ptest.boulton, "boulton", obj.fn = "rss", opt.method = "ga", seed = 54321) # Parameter estimation using Differential Evolution ptest.boulton.de.rss <- fit.optimization(ptest.boulton, "boulton", obj.fn = "rss", opt.method = "de", seed = 54321) # Parameter estimation using Particle Swarm Optimization ptest.boulton.pso.rss <- fit.optimization(ptest.boulton, "boulton", obj.fn = "rss", opt.method = "pso", seed = 54321) # }