Generic function to estimate the aquifer parameters from a pumping test. This function uses nonlinear least squares to estimate these parameters.

fit(ptest, model, control.par, trace = F)

Arguments

ptest

A pumping_test object

model

Character string specifying the model used in the estimation

control.par

A list with parameters of the parameter estimation using nonlinear regression

trace

A logical flag indicating if the results of the nonlinear regression are printed on the screen

Value

A list with the following entries:

  • hydraulic_parameters: hydraulic parameters of the model (includes transmissivity, storage coefficient and radius of influence)

  • paraemters: fitted parameters (includes a and t0)

  • resfit: List with the results of the nonlinear regression

  • value: Value of the residual sum of squares

See also

Other base functions: additional.parameters<-, confint.pumping_test, confint_bootstrap, confint_jackniffe, confint_wald, estimated<-, evaluate, fit.optimization, fit.parameters<-, fit.sampling, hydraulic.parameter.names<-, hydraulic.parameters<-, model.parameters, model<-, plot.pumping_test, plot_model_diagnostic, plot_sample_influence, plot_uncert, print.pumping_test, pumping_test, simulate, summary.pumping_test

Examples

#Fit test from confined aquifer data(theis) ptest <- pumping_test('Well1', Q = 1.388e-2, r = 250, t = theis$t, s = theis$s) res_th <- fit(ptest, 'theis') print(res_th)
#> $hydraulic_parameters #> $hydraulic_parameters$Tr #> [1] 0.001424288 #> #> $hydraulic_parameters$Ss #> [1] 2.113884e-05 #> #> $hydraulic_parameters$radius_influence #> [1] 2843.472 #> #> #> $parameters #> $parameters$a #> [1] 1.785655 #> #> $parameters$t0 #> [1] 413.0329 #> #> #> $resfit #> Nonlinear regression model #> model: s ~ theis_solution(ptest, a, t0, t) #> data: drawdown_curve #> a t0 #> 1.786 413.033 #> residual sum-of-squares: 0.01701 #> #> Number of iterations to convergence: 6 #> Achieved convergence tolerance: 1.49e-08 #> #> $value #> [1] 0.01700895 #>
#Fit test from confined aquifer res_cj <- fit(ptest, 'cooper_jacob')