cauchy_neighborhood_function_utilities |
cauchy_neighborhood_function_utilities.f90 |
This module defines the Cauchy neighborhood function |
constants_utilities |
constants_utilities.f90 |
|
correlation_distance_utilities |
correlation_distance_utilities.f90 |
This module defines a class to calculate the correlation distance between kohonen prototypes |
dataframe_utilities |
dataframe_utilities.f90 |
This module defines a data structure called dataframe |
direction_cosine_distance_utilities |
direction_cosine_distance_utilities.f90 |
This module defines a class to calculate the direction cosine distance between kohonen prototypes |
distance_base_utilities |
distance_base_utilities.f90 |
This module defines an abstract class to represent an abstract function to calculate distance Read more… |
euclidean_distance_utilities |
euclidean_distance_utilities.f90 |
This module defines a class to calculate the Euclidean distance between kohonen prototypes |
exponential_learning_rate_function_utilities |
exponential_learning_rate_function_utilities.f90 |
|
factory_distance_utilities |
factory_distance_utilities.f90 |
This module defines a factory to create distance objects |
factory_learning_rate_function_utilities |
factory_learning_rate_function_utilities.f90 |
This module defines a factory to create learning rate functions |
gaussian_learning_rate_function_utilities |
gaussian_learning_rate_function_utilities.f90 |
This module defines a class that represents the gaussian learning rate function |
gaussian_neighborhood_function_utilities |
gaussian_neighborhood_function_utilities.f90 |
This module defines the Gaussian neighborhood function |
general_utilities |
general_utilities.f90 |
This module includes general purpose functions used in several parts of the library |
kohonen_layer_base_utilities |
kohonen_layer_base_utilities.f90 |
|
kohonen_layer_parameters_utilities |
kohonen_layer_parameters_utilities.f90 |
|
kohonen_layer_utilities |
kohonen_layer_utilities.f90 |
This module defines a class that represents a layer in a self-organizing map |
kohonen_map_base_utilities |
kohonen_map_base_utilities.f90 |
This module defines an abstract class for kohonen maps |
kohonen_pattern_utilities |
kohonen_pattern_utilities.f90 |
This module defines a class called kohonen_pattern to store the input patterns |
kohonen_prototype_utilities |
kohonen_prototype_utilities.f90 |
|
learning_rate_function_base_utilities |
learning_rate_function_base_utilities.f90 |
This module defines an abstract class to define learning rate functions |
linear_learning_rate_function_utilities |
linear_learning_rate_function_utilities.f90 |
|
logger_utilities |
logger_utilities.f90 |
|
manhattan_distance_utilities |
manhattan_distance_utilities.f90 |
This module defines a class to calculate the Manhattan distance between kohonen prototypes |
max_distance_utilities |
max_distance_utilities.f90 |
This module defines a class to calculate the Max distance between kohonen prototypes |
mt19937_64 |
mt19937_64.f90 |
This module defines a class that encapsulates the mersenne-twister random number generator |
multilayer_self_organizing_map_utilities |
multilayer_self_organizing_map_utilities.f90 |
This module defines a class that represents a multilayer self_organized_map |
neighborhood_function_base_utilities |
neighborhood_function_base_utilities.f90 |
This module defines an abstract class to define neighborhood functions |
precision_utilities |
precision_utilities.f90 |
|
quicksort_utilities |
quicksort_utilities.f90 |
|
random_generator_base_utilities |
random_generator_base_utilities.f90 |
|
random_number_generator_utilities |
random_number_generator_utilities.f90 |
This module defines the random_number_generator class that is used to generate random numbers
in several procedures across ATALIB. |
rkiss05_generator_utilities |
rkiss05_generator_utilities.f90 |
Define the class rkiss05_generator that represents a random number generator
based on the rkiss method Read more… |
self_organizing_map_utilities |
self_organizing_map_utilities.f90 |
This module defines a class for simple self_organizing_map (one kohonen layer) |
som_predict_variables |
som_predict_variables.f90 |
|
som_train_variables |
som_train_variables.f90 |
This module defines the variables for the program som_train |
sort_base_utilities |
sort_base_utilities.f90 |
|
two_level_self_organizing_map_utilities |
two_level_self_organizing_map_utilities.f90 |
This module defines a class that represents a two layer self_organizing_map for clustering |
two_level_som_estimate_variables |
two_level_som_estimate_variables.f90 |
|
two_level_som_train_variables |
two_level_som_train_variables.f90 |
|