Function to sample for a complex probabibility density function using MCMC with the adaptative Metropolis algorithm proposed by Roberts and Rosenthal(2009).

run_adap_metropolis_MCMC(startvalue, iterations = 10000,
  iter_update_par = 100, ptest, model, prior.pdf, prior.parameters,
  proposal.sigma, cov.corr = FALSE)

Arguments

startvalue

A numeric vector with the fit parameters of the pumping test.

iterations

An integer with the number of iterations to run the chain.

iter_update_par

An integet specifying the number of iterations to update the covariance matrix.

ptest

A pumping_test object.

model

A character string with the name of the model used in the parameter estimation.

prior.pdf

A character vector with the distributions of the fit parameters ( 'unif' and 'norm' are currently supported).

prior.parameters

A matrix with the parameters of the distributions (min and max for uniform distributions, mean and sd for normal distributions)

proposal.sigma

A numeric vector with the standard deviations of the proposal distribution.

cov.corr

A logical flag indicating if the covariance matrix must be corrected for positive definiteness.

Value

A matrix with the sampled values of the fit parameters.

Details

This function implements the adaptative MCMC proposed by Roberts and Rosenthal (2009), in which the proposal distribution \(Q_{n}(x, \cdot)\) is given by: $$Q_{n}(x, \cdot) = \left\{ \begin{aligned} &(1-\theta)N(x, (2.38)^{2}\Sigma_{n}/d) + \theta N(x,(0.1)^{2}I_{d}/d), &\Sigma_{n}\text{ is positive definite} \\ &N(x,(0.1)^{2}I_{d}), &\Sigma_{n}\text{ is not positive definitive}\\ \end{aligned} \right.$$ where

  • \(\theta \in (0,1)\): control parameters

  • \(N()\): Normal distribution

  • \(\Sigma_{n}\): empirical covariance matrix

  • \(d\): number of parameters

  • \(I_{d}\): identity matrix of size \(d\).

This proposal function is implemented in the function proposalfunction_cov.

References

Roberts, G. O. & Rosenthal, J. S. Examples of adaptive MCMC Journal of Computational and Graphical Statistics, 2009, 18, 349-367.

See also

Other amcmc_auxiliary_function functions: posterior, prior, proposalfunction_cov, proposalfunction